CHLOROFLUORINATION AND CHLORINATION OF BIS(TRIFLUOROMETHYLTHIO)ALKANES

G. HARAN AND D. W. A. SHARP

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ (Great Britain) (Received May 31, 1973)

SUMMARY

The reactions between $CF_3SCF_2C(CF_3)FC(CF_3)FCF_2SCF_3$, $CF_3SC(CF_3)-FCF_2SCF_3$ and $CF_3SCH_2CH_2SCF_3$ and chlorine monofluoride are described. New compounds identified are $CF_3SF_2CF_2C(CF_3)FC(CF_3)FCF_2SF_2CF_3$, $CF_3-SCH_2CHClSCF_3$ and $CF_3SCH_2CCl_2SCF_3$. Evidence is also presented for the formation of a series of R_1SF_4Cl derivatives.

INTRODUCTION

Chlorine monofluoride is an effective agent for the fluorination or chlorofluorination of lower oxidation state sulphur derivatives: sulphur tetrafluoride gives SF_5Cl^1 , bis(perfluoroalkyl)sulphides give sulphur(IV) derivatives², $(R_f)_2SF_2$, and sulphur(VI) derivatives³, $(R_f)_2SF_4$, and sulphoxides give sulphur(VI) derivatives⁴, $(R_f)_2S(O)F_2$. We wish to report on the reactions between chlorine monofluoride and some bis(trifluoromethylthio)alkanes.

RESULTS AND DISCUSSION

1,4-Bis(trifluoromethylthio)-2,3-bis(trifluoromethyl)perfluorobutane reacts with chlorine monofluoride to give traces of HCl, SiF₄, CF₄, CF₃Cl, SF₄ and SOF₂ but 75% conversion to 1,4-bis(trifluoromethyldifluorothio)-2,3-bis(trifluoromethyl)perfluorobutane.

$$CF_{3}SCF_{2}C(CF_{3})FC(CF_{3})FCF_{2}SCF_{3} \xrightarrow{ClF} CF_{3}SF_{2}CF_{2}C(CF_{3})FC(CF_{3})-FCF_{2}SF_{2}CF_{3}$$

$$FCF_{2}SF_{2}CF_{3}$$

The monosulphur(IV) derivative is not observed and under the conditions used there is no oxidation to sulphur(VI). This appears to be the first bis(sulphur(IV) fluoride) to be described although other examples should be capable of being prepared by similar reactions to that described above. The compound is stable in air for short periods but there is slight decomposition at its boiling point (561– 563°K). The IR spectrum compares well with those of $(R_f)_2SF_2$ derivatives¹; compared with the spectrum of CF₃SCF₂C(CF₃)FC(CF₃)FCF₂SCF₃, the main extra features are the strong bands at between 600 and 700 cm⁻¹ due to S–F modes. The mass spectrum does not show the parent ion. In the ¹⁹F NMR spectrum the SF₂ and CF₂ fluorines show magnetic non-equivalence, the molecule has two asymmetric centres and the geometry about each sulphur atom is likely to be complex although the fluorines should be essentially axial in trigonal-bipyramids. CF₃SF₂CF₂CF₃ also shows similar non-equivalence⁴.

1,2-Bis(trifluoromethylthio)hexafluoropropane, $CF_3SC(CF_3)FCF_2SCF_3$, does not give isolable sulphur(IV) derivatives with chlorine monofluoride but in addition to the volatile products CF_4 , CF_3Cl , SiF_4 , Cl_2 , CF_3SF_5 and *trans*- CF_3SF_4Cl resulting from breakdown of the molecule, two fractions containing *trans*- $(CF_3)_2CFSF_4Cl$, *trans*- $CF_3SF_4CF_2CFClCF_3$, *trans*- $CF_3CFClCF_2SF_4Cl$, $CF_3SCF_2CFClCF_3$, $CF_3SCF(CF_3)CF_2Cl$, $(CF_3)_2CFSCl$, $CF_3CFClCF_2SCl$, $(CF_3)_2CFCl$ and $CF_3(CF_2Cl)CFSCl$ resulted. Individual compounds could not be isolated and identification is by NMR spectroscopy only; similar products have been reported from the reaction between $R_1SR'_1$ and chlorine monofluoride³.

The major products of the reaction between hydrogen-containing 1,2-bis-(trifluoromethylthio)ethane and chlorine monofluoride are the chlorination products CF₃SCHClCH₂SCF₃ and CF₃SCCl₂CH₂SCF₃. The former compound is clearly identified from its mass spectrum and from its NMR spectrum. The latter compound is identified as the 1,1-dichloro derivative rather than CF₃-SCHClCHClSCF₃ by the mass spectrum which shows CCl_2^+ and $SCCl_2^+$ ions, by the ¹H NMR spectrum which shows a signal ($\delta = 3.44$ ppm) indicative of a CH₂ rather than CH groups⁵ and by the ¹⁹F NMR spectrum which shows two types of CF₃S group. CF₃SCHClCH₂SCF₃ can also be prepared in poor yield from CF₃SCH₂CH₂SCF₃ and chlorine.

From the reactions reported here, it is clear that chlorine monofluoride can react with bis(trifluoromethylthio)alkanes in a variety of ways including oxidation to sulphur(IV) fluorides and oxidation to sulphur(VI) derivatives—often after C-S bond cleavage. However, hydrogen-containing species appear to undergo chlorination rather than fluorination. There is always major breakdown of the molecules.

EXPERIMENTAL

Bis(trifluoromethylthio)alkanes were prepared by photolytic addition of CF_3SSCF_3 to olefins⁶. Chlorine monofluoride (Ozark-Mahoning) was handled in an all-metal vacuum line, reactions were carried out in a 75 ml Monel Hoke bomb.

Reaction of $CF_3SCF_2C(CF_3)FC(CF_3)FCF_2SCF_3$ and ClF

CF₃SCF₂C(CF₃)FC(CF₃)FCF₂SCF₃ (6.51 mmol) and ClF (28 mmol) were allowed to react at room temperature. The volatile products under static vacuum were CF₄, CF₃Cl, SF₄, HCl, SiF₄ and SOF₂ and the remaining products were unreacted CF₃SCF₂C(CF₃)FC(CF₃)FCF₂SCF₃ (1.5 mmol) and CF₃SF₂CF₂C-(CF₃)FC(CF₃)FCF₂SF₂CF₃ (nc) (4.5 mmol). Analysis: Found: C, 16.5; F, 72.5; S, 10.9%. C₈F₂₂S₂ requires C, 16.6; F, 72.3; S, 11.1%; b.p. 561–563°K/760 mmHg. ¹⁹F NMR data: chemical shifts; δ (CF₃S), + 55.8; δ (CCF₃), + 69.3; δ (CF₂), +80.8, +87.7; δ (CF), +169.8; δ (SF₂), +9.5, +13.1 ppm w.r.t. CCl₃F: coupling constants; J(SFF'), 113.0; J(F₃CSF₂), 20.3; J(CFF'), 191.8; J(F₃CSF₂-CF₂), 7.9 Hz. Other coupling constants could not be derived from the complex spectrum.

IR data: 1322 (w), 1278 (vs), 1255 (vs), 1227 (vs), 1201 (s), 1163 (m), 1143 (m), 1129 (m), 1101 (vs), 1026 (w), 1014 (m), 934 (w), 899 (m), 855 (m), 842 (m), 809 (s), 785 (m), 752 (s), 681 (s), 649 (s), 619 (s) cm⁻¹.

Mass spectrum (*m*/*e*, relative abundance, ion): 401^{\dagger} , $C_7F_{15}S^+$; 389^{\dagger} , $C_6F_{13}SF_2^+$; 370^{\dagger} , $C_6F_{14}S^+$; 351, 1, $C_6F_{13}S^+$; 332^{\dagger} , $C_6F_{12}S^+$; 313^{\dagger} , $C_6F_{11}S^+$; 301^{\dagger} , $C_5F_{11}S^+$; 281^{\dagger} , $C_6F_{11}^+$; 263, 1, $C_5F_9S^+$; 251^{\dagger} , $C_4F_9S^+$; 250^{\dagger} , $C_5F_{10}^+$; 232^{\dagger} , $C_4F_8S^+$; 231, 2, $C_5F_9^+$; 225^{\dagger} , $C_5F_7S^+$; 213^{\dagger} , $C_4F_7S^+$; 212^{\dagger} , $C_5F_8^+$; 201, 1, $CF_3SF_2CF=CF^+$ and $CF_3SF-CF=CF_2^+$; 182, 1, $C_3F_6S^+$; 181, 7, $C_4F_7^+$; 175^{\dagger} , $C_4F_5S^+$; 169^{\dagger} , $C_3F_7^+$; 163^{\dagger} , $C_3F_5S^+$; 162^{\dagger} , $C_4F_6^+$; 151, 1, $C_2F_5S^+$; 150, 8, $C_3F_6^+$; 144^{\dagger} , $C_3F_4S^+$; 143^{\dagger} , $C_4F_5^+$; 139, 4, $CF_3SF_2^+$; 132^{\dagger} , $C_2F_4S^+$; 131, 3, $C_3F_5^+$; 124^{\dagger} , $C_4F_4^+$; 120, 4, CF_4S^+ ; 113, 2, $C_2F_3S^+$; 112, 1, $C_3F_4^+$; 101, 6, CF_3S^+ ; 100, 10, $C_2F_4^+$; 93, 5, $C_3F_3^+$; 82, 3, CF_2S^+ ; 81, 2, $C_2F_3^+$; 70, 10, SF_2^+ ; 69, 100, CF_3^+ ; 63, 5, CFS^+ ; 51, 7, SF^+ ; 50, 51, CF_2^+ ; 44, 3, CS^+ ; 32, 5, S^+ ; 31, 12, CF^+ .

The metastable transitions observed in this spectrum are listed in Table 1.

m_1	Transition	m_2	m*		
			Calc.	Found	
231	$C_5F_9^+ \rightarrow C_4F_7^+ + C_5F_2$	181	141.9	141.9	1
101	$CF_3S^+ \rightarrow CF_2S^+ + F_{\bullet}$	82	66.6	66.7	
⁶⁹ }	$CF_3^+ \rightarrow CF_2^+ + F_{\bullet}$ or	50	36.2	36.2	
131 }	$C_3F_5^+ \rightarrow CF_3^+ + FC \equiv CF$	69	36.3		

Reaction of $CF_3SC(CF_3)CFCF_2SCF_3$ and ClF

 $CF_3SCF(CF_3)CF_2SCF_3$ (4.50 mmol) and CIF (20 mmol) were allowed to react at room temperature. Volatile products under static vacuum were CF_4 ,

[†] Denotes important ions of less than 1% abundance.

¹⁹ F NMR DATA FOR PRODUCTS OF REACTION BETWEEN CF ₃ SC(CF ₃)CFCF ₂ SCF ₃ AND CIF	IS OF REACTIO	N BETWEEN CF3	SC(CF ₃)CF	CF ₂ SCF ₃ ANI	OIF CIF	
Compound	Chemical s	Chemical shifts (ppm)†				Coupling constants (Hz)
	ð(SF4)	$\delta(CF_3S)$	δ(CF ₃)	$\delta(CF_2)$	ð(CF)	
trans-(CF ₃)2CFSF ₄ Cl	—122.0		+74.7		+156.9	$J(CFSF_4) = 4.5; J(CF_3CSF_4) = 12.4;$ $J(CF_3CF) = 5.6$
trans-CF ₃ SF ₄ CF ₂ CFClCF ₃	- 22.9	+68.1	+76.1	+ 86.9	+143.9	$J(CFSF_4) = 23.0$
trans-CF3CFCICF2SF4CI	—124.4		+77.4	+105.6	+147.6	$J(CF_2SF_4) = 23.6; J(CFCSF_4) = 11.4;$ $J(CF_3CCSF_4) = 5.6$
CF ₃ SCF ₂ CFCICF ₃ ††		+39.0	+75.1	+ 78.4	+141.6	$J(\overline{CF_3SCE_2}) = 10.2; J(\overline{CF_3SCCF}) = 4.8;$ $J(\overline{CF_3SCCCF_3}) \sim 0; J(\overline{CF_3CF}) = 10.1;$ $J(\overline{CF_3CCF_3}) = 10.1; J(\overline{CF_3CF}) = 14.7$
CF ₃ SCF(CF ₃)CF ₂ Cl††		+37.6	+71.9	+ 63.3	+165.7	
(CF ₃) ₂ CFSCI			+76.8		+167.1	$J(\overline{\mathrm{CF}}_{3}\mathrm{CF})=10.2$
CF ₃ CFCICF ₂ *SCI			+80.0	+ 79.1 + 79.8	+138.8	$J(CFF^{1}) = 39.6; J(CFCF) = 10.4;$ $J(CF^{1}CF) = 11.3; J(CFCF_{3}) = 7.2;$ $J(CF^{1}CF_{3}) = 6.0; J(CFCICF_{3}) = 10.8$
(CF ₃) ₂ CFCl			+82.2		+145.8	$J(CF_3CF) = 6.2$
CF ₃ (CF ₂ CI)CFSCI			+73.0	+ 67.9	+152.7	$J(\overline{\mathrm{CF}}_{3}\mathrm{CF}_{2}) = 9.0; J(\overline{\mathrm{CF}}_{2}) = 9.0;$ $J(\overline{\mathrm{CF}}_{3}\mathrm{CF}) = 16.9$
* Denotes non-equivalence.	† Relative to	† Relative to external CCl ₃ F. †† Agrees with published spectrum ⁶ .	†† Agrees	with publishe	d spectrum ⁸ .	

426

TABLE 2

 CF_3Cl , Cl_2 , SiF_4 , CF_3SF_5 and CF_3SF_4Cl . The remainder of the products formed two fractions (volatile at 251°K, involatile at 228°K; volatile at 228°K, involatile at 193°K) which could not be further separated. Identification of the products was attempted by ¹⁹F NMR spectroscopy (see Table 2 and compare ref. 7).

Reaction of CF₃SCH₂CH₂SCF₃ and ClF

 $CF_3SCH_2CH_2SCF_3$ (4.70 mmol) and ClF (20 mmol) were allowed to react at room temperature. Volatile products were HCl, CF_4 , CF_3Cl , Cl_2 and SiF_4 . The remaining material was unchanged $CF_3SCH_2CH_2SCF_3$ (3.50 mmol), $CF_3SCCl_2CH_2SCF_3$ (nc) and $CF_3SCHClCH_2SCF_3$ (nc) (trace only).

Mass spectrum of CF₃SCCl₂CH₂SCF₃ (*m*/*e*, relative abundance, ion; ions quoted for ³⁵Cl only): 298, 8, M⁺; 263, 8, (M–Cl)⁺; 261, 3, C₄F₆ClS₂⁺; 229, 46, C₃H₂F₃Cl₂S₂⁺; 228, 26, C₃HF₃Cl₂S₂⁺ and C₄H₂F₆S₂⁺; 226, 3, C₄F₆S₂⁺; 197, 3, C₃H₂F₃Cl₂S⁺; 196, 4, C₃HF₃Cl₂S⁺; 195, 4, C₃F₃Cl₂S⁺; 194, 6, C₃H₂F₃ClS₂⁺; 192, 4, C₃F₃ClS₂⁺; 177, 3, C₃HF₂Cl₂S⁺; 176, 2, C₃F₂Cl₂S⁺; 162, 10, C₃H₂F₃ClS⁺; 161, 8, C₃HF₃ClS⁺; 159, 4, C₃H₂F₃S₂⁺; 157, 4, C₃F₃S₂⁺; 127, 67, C₃H₂F₃S⁺; 125, 59, C₃F₃S⁺; 115, 54, CF₃SCH₂⁺; 114, 14, C₂HF₃S⁺ and CCl₂S⁺; 101, 4, CF₃S⁺; 92, 9, C₂HClS⁺; 91, 10, C₂ClS⁺; 82, 38, CCl₂⁺ and CF₂S⁺; 79, 39, CClS⁺; 77, 3, C₂H₂FS⁺; 69, 100, CF₃⁺; 63, 8, CFS⁺; 60, 6, C₂HCl⁺; 59, 12, C₂Cl⁺; 58, 8, C₂H₂S⁺; 56, 2, C₂S⁺; 50, 5, CF₂⁺; 47, 85, CCl⁺; 46, 10, CH₂S⁺; 45, 3, CHS⁺; 44, 16, CS⁺; 32, 2, S⁺; 31, 1, CF⁺; 26, 11, C₂H₂⁺.

The metastable transitions observed in this spectrum are listed in Table 3.

TABLE	3
-------	---

m_1	Transition	m_2	<i>m</i> *	
			Calc.	Found
298	$M^+ \rightarrow C_3H_2F_3ClS_2^+ + CF_3Cl$	194	126.4	126.5
298	$M^+ \rightarrow C_3H_2F_3ClS^+ + CF_3SCl$	162	88.1	88.2
115	$CF_3SCH_2^+ \rightarrow CFS^+ + CF_2H_2$	63	34.5	34.5

Mass spectrum of CF₃SCHClCH₂SCF₃ (*m/e*, relative abundance, ion; ions quoted for ³⁵Cl only): 264, 6, M⁺; 229, 10, (M–Cl)⁺; 195, 1, C₃H₃F₃ClS₂⁺; 163, 9, C₃H₃F₃ClS⁺; 160, 2, C₃H₃F₃S₂⁺; 159, 2, C₄H₂F₃S₂⁺; 149, 9, CF₃SCHCl⁺; 128, 9, C₃H₃F₃S⁺; 127, 3, C₃H₂F₃S⁺; 115, 58, CF₃SCH₂⁺; 101, 15, CF₃S⁺; 94, 3, C₂H₃ClS⁺; 93, 3, C₂H₂ClS⁺; 91, 10, C₂ClS⁺ and C₂H₃S₂⁺; 90, 3, C₂H₂S₂⁺; 82, 11, CF₂S⁺; 77, 9, C₂H₂FS⁺; 69, 100, CF₃⁺; 63, 36, CFS⁺; 62, 20, C₂H₃Cl⁺; 61, 13, C₂H₂Cl⁺; 60, 1, C₂HCl⁺; 59, 17, C₂H₃S⁺; 58, 16, C₂H₂S⁺; 57, 5, C₂HS⁺; 50, 9, CF₂⁺; 47, 88, CCl⁺; 35, 23, Cl⁺; 32, 19, S⁺; 31, 19, CF⁺; 27, 45, C₂H₃⁺; 26, 51, C₂H₂⁺.

The metastable transitions observed in this spectrum are listed in Table 4.

TA	BL	Æ	4

m_1	Transition	m_2	<i>m</i> *	m*	
	· ·		Calc.	Found	
264	$M^+ \rightarrow C_4 H_3 F_6 S_2^+ + C I_{\bullet}$	229	198.6	198.6	
115	$CF_3SCH_2^+ \rightarrow CFS^+ + CF_2H_2$	63	34.5	34.5	

The NMR spectrum of CF₃SCCl₂CH₂SCF₃ gave the following chemical shifts; ¹H spectrum: δ (CH₂), +3.44; ¹⁹F spectrum: δ (CF₃SCCl₂), +43.6; δ (CF₃SCH₂), +40.8.

Reaction of $CF_3SCH_2CH_2SCF_3$ and Cl_2

The reaction between CF₃SCH₂CH₂SCF₃ (1.27 mmol) and Cl₂ (20.2 mmol) was carried out in the same manner as the reactions with chlorine monofluoride. The products were unreacted Cl₂, HCl, unreacted CF₃SCH₂CH₂SCF₃ (0.90 mmol) and CF₃SCHClCH₂SCF₃ (0.20 mmol) fractionated between traps at 228°K and 208°K. The mass spectrum was identical with that of the sample prepared by use of chlorine monofluoride. The ¹⁹F NMR spectrum gave shifts δ (CF₃SCH₂), +39.5; δ (CF₃SCHCl), +38.4. The ¹H spectrum was analysed as an ABX system to give parameters δ_X , +5.17; δ_B , +3.37; δ_A , +3.26 ppm; J(AB), 7.7; J(AX), 7.4; J(BX), 5.4 Hz.

ACKNOWLEDGEMENTS

We thank the Ministry of Defence for financial support for this work.

REFERENCES

- 1 H. L. ROBERTS, Quart. Rev. Chem. Soc., 15 (1961) 30.
- 2 D. T. SAUER AND J. M. SHREEVE, J. Fluorine Chem., 1 (1971) 1.
- 3 T. ABE AND J. M. SHREEVE, Inorg. Nuclear Chem. Letters, 9 (1973) 465.
- 4 D. T. SAUER AND J. M. SHREEVE, Z. Anorg. Allgem. Chem., 385 (1971) 113.
- 5 I. FLEMING AND D. H. WILLIAMS, Spectroscopic Methods in Organic Chemistry, McGraw-Hill, New York, 1966.
- 6 G. HARAN AND D. W. A. SHARP, J. Chem. Soc. Perkin Trans. I, (1972) 34.
- 7 A. HAAS, W. KLUG AND H. MARSMANN, Chem. Ber., 105 (1972) 820.
- 8 J. F. HARRIS, JR., J. Amer. Chem. Soc., 84 (1962) 3148,